
Imperative Synchronous Languages
The Quartz Language

Semantics

Imperative Synchronous Languages

Last Update: January 1, 2021

1 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Outline

1 Imperative Synchronous Languages
Execution in Cycles
Imperative Synchronous Languages

2 The Quartz Language
Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

3 Semantics
Core Statements
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

2 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Introduction

in this chapter, we consider the description of synchronous systems by imperative
synchronous languages

a synchronous system works in cycles, and in each cycle,

it reads all inputs I
it computes all outputs O w.r.t. the internal state S
it updates the internal state S for the next cycle

each such computation step is called a reaction or macro step

we must therefore describe the function S × I → S ×O
it could be done by synchronous DPNs, where all nodes read one value from all
inputs and produce one value on each output

3 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Imperative Synchronous Languages

in this chapter, we do not consider synchronous DPNs, and instead, consider
imperative synchronous languages

in general, these languages are obtained from any sequential imperative language
by

introducing a new statement pause
and thereby the distinction between micro- and macro steps:

all actions between two pause statements belong to one reaction, i.e. one macro step
these actions are called micro steps
all micro steps refer to the same variable environment
thus, one often says that micro steps are executed in zero time

4 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Understanding Synchronous Languages

Example

x = 3;

w1: pause;
x = 5;

y = x;

w2: pause;

in the first reaction, x is 3

then, the control stops at w1:pause

in the second reaction, x and y are both 5

then, the control stops at w2: pause

5 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Understanding Synchronous Languages

Example

x = 3;

w1: pause;
y = x;

x = 5;

w2: pause;

this program is equivalent to the previous
one, i.e.

in the first reaction, x is 3
in the second reaction, x and y are both 5

the ordering of the micro steps in a macro
step does not matter

macro steps are sets of micro steps
micro steps are executed by respecting data
dependencies
i.e., first execute x = 5 then y = x

synchronous programs dynamically reorder micro steps so that these are executed as if
the complete variable environment would already be given at the beginning of the
macro step 6 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Dynamic Scheduling of Micro Steps

Example

pause;
y1 = y2 & →

x;

y2 = y1 & →
!x;

pause;

the previous example might suggest that we could
simply reorder the assignments in programs

however, this does not work in general

the execution order of micro steps depends on
inputs, thus dynamic scheduling is required:

pause;
if(x) {

y2 = y1 & !x; // = false due →
to x==true

y1 = y2 & x; // = false due →
to y2==false

} else {

y1 = y2 & x; // = false due →
to x==false

y2 = y1 & !x; // = false due →
to y1==false

}

pause;

7 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Dynamic Scheduling of Micro Steps

Example

w1: pause;
if(y1) y1 = true;
if(y1)

if(!y2) y2 = →
true;

w2: pause;

Example

w1: pause;
y1 = y1;

y2 = y1 & !y2;

w2: pause;

a second argument against static ordering of assignments is that not only their
right hand sides have to be considered, but also their entire trigger conditions

e.g., this involves conditions of if-statements

8 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Delayed Assignments

Example

x = 3;

z = y;

next(y) = x;

w1: pause;
x = 5;

z = y;

w2: pause;

there are also delayed assignments
their right hand sides are evaluated in the
current macro step
but the assignment is done in the next macro
step

in the second macro step,
y and z have therefore the value 3

9 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Write Conflicts

Example

x = 3;

x = 5;

next(y) = 3;

w1: pause;
y = 5;

w2: pause;

each variable must have a unique value in
each macro step

assigning different values to a variable in one
macro step is therefore a write conflict

this is not allowed

the causality analysis of the compiler can also
take care of this

also, absence of typical runtime errors can be
checked thereby

division by zero
out-of-bound access to array elements

10 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Event and Memorized Variables

Example

x = 3;

w1: pause;
y = x;

w2: pause;

in the first step, x is 3, and we do not know y’s
value

in the second step, y should have the same
value as x, but which value is that?

since there is no action that assigns a value to
x, the reaction to absence takes place

it depends on the declaration of x

if x is an event variable, then it is reset in the
second macro step to the default value 0

if x is a memorized variable, then it stores the
value 3 of the previous macro step

11 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Thread Interaction

Example

module P(event →
a,b,c) {

{

b = true;
p: pause;
if(a) b = true;
r: pause;

}

||

{

q:pause;
if(!b) c = true;
a = true;
s: pause;
}

}

threads must interact with each other for a
correct causal execution

no problem for the compiler, since threads of
the program do not necessarily mean threads
in the compiled code

in the synthesis part, we will explain the
compilation of synchronous programs to
guarded actions

threads are no longer visible at that
representation

12 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Causality Analysis

Example

pause;
y1 = y2;

y2 = y1;

pause;

there are programs where no execution ordering can be
found

compilers have to check at compile-time whether this can
happen

this phase is called causality analysis

it assures that for all reachable states and all possible
inputs, the micro steps can be executed in an ordering
where all values are known when needed

programs that are causally correct can, in principle, be
rewritten to eliminate all cyclic dependencies

however, this leads to an unavoidable blow-up
[13, 19, 18, 17, 16]

13 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Imperative Synchronous Languages

the most popular imperative synchronous language is Esterel [7, 9, 2, 3, 4]

we consider our descendent Quartz, which is very similar

also, some Statecharts variants are synchronous

and of course, all digital hardware circuits, and languages used to describe them
(however, neither VHDL nor Verilog are synchronous languages!)

in the following, we consider the Esterel variant Quartz developed at the TU
Kaiserslautern in detail

14 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Execution in Cycles
Imperative Synchronous Languages

Variants of Synchronous Languages

some languages like Statemate Statecharts demand that all assignments are
delayed assignments

thus, there are no causality problems in these languages

other variants differ in the way the reaction to absence is handled

some languages make explicit use of absence values �
others, like Quartz define a default value for each type
(but compiler optimizations may decide that values are not required and are
therefore replaced by � [10])

causality may also depend on particular definitions [8, 21, 24]

15 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Our Programming Language Quartz

in the following, the language Quartz is briefly presented

we start with the syntax of the language

declarations: using flows, data types, and storage classes
expressions
statements

and proceed then with the (operational) semantics

SOS reaction rules
SOS transition rules
an interpreter based on SOS rules

finally, we consider some specific issues like

causality problems
schizophrenia problems

16 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Modules in Quartz

Example

module →
NAME(<decls >) {

<bodyStatement >

}

Quartz programs are organized in
modules

a module can be viewed as a class of
an object oriented language

each module is defined by its name NAME, its interface, and its body statement
modules can be instantiated several times by

inserting expressions for the inputs of the module
and inserting writable variables for the outputs of the module

in Quartz, each module must be stored in a single file whose name is the name of
the module (with file suffix .qrz)

17 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Variable Declarations

each variable must be declared with the following information

information flow
determines whether the program can read or write the variable
input, output, inout, local and label variables

data type
determines the possible values a variable may have
typical types: booleans, nat, int, real, arrays, tuples

storage class
determines the value if no assignment is executed on a variable
memorized variables store their previous value
event variables are reset to a default value

18 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Information Flows in Module’s Interface

input variables
are declared by ? in the interface of a module
input variables can only be read by the module
their values are given by the environment (or a simulator)

output variables
are declared by ! in the interface of a module
output variables can only be written by the module
their values are uniquely determined by the module itself

inout variables
are default declarations (without ? or !) in the interface
inout variables can only be read and written by the module
values are determined by this module or other modules
after linking, inout becomes output

19 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Further Information Flows

in addition to the modules’ interfaces, there are further variable declarations

local variables
are declared by local variable statements
the module can read and write these variables
but no other module can access these variables
local variables have a scope given by the syntax of the local variable declaration

labels
denote control flow locations like pause statements
these variables are implicitly assigned by the control flow
no assignments are allowed to these variables
they can also not be read in the programs

20 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Storage Classes

event variables
are declared by keyword event
the reaction to absence resets these variables to a default value
these variables behave like wires in a hardware circuit
typical hardware-style variables

memorized variables
are declared by keyword mem or nothing, since mem is the default
the reaction to absence stores the previous values in these variables
these variables behave like registers in a hardware circuit
typical software-style variables

21 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Finite Scalar Data Types

bool
has values false and true
has boolean operations !, &, |, ->, <->

nat{m}
has values 0, . . . ,m − 1
has numeric operations +, -, *, /, %
and relations ==, !=, <, <=, >, >=

int{m}
has values −m, . . . ,m − 1
has numeric operations +, -, *, /, %, abs
and relations ==, !=, <, <=, >, >=

22 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Infinite Scalar Data Types

in addition to the scalar finite types, there are also infinite types

nat
has values 0, 1, 2, . . .
has numeric operations +, -, *, /, %,
and relations ==, !=, <, <=, >, >=

int
has values . . . ,−2,−1, 0, 1, 2, . . .
has numeric operations +, -, *, /, %,
and relations ==, !=, <, <=, >, >=

23 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Further Scalar Data Types: Bitvectors

bv{m}
has values 0...0b,. . . ,1...1b (bitvectors of lengths m)
has bitwise boolean operations !, &, |, ->, <->
bitvector operations for bitvectors y and x = [xk−1, . . . , x0],
we have:

x@y (concatenation)
b::m generates bitvector of length m consisting of bits b

x{m} extracts bit xm from x

x{m:n} extracts segment [xm, . . . , xn] from x

reverse(x) is [x0, . . . , xk−1]
fromArray(a) converts boolean array a to a bitvector

bv
has values 0b, 1b, 00b, 01b,. . . (bitvectors of arbitrary lengths)
has same operations as bv{m}

bitvectors are not boolean arrays!: in contrast to arrays, only one write operation
is allowed per macro step on a bitvector 24 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Compound Data Types

arrays

for any type α, [m]α with some constant m is an array of base type α
access to array elements is written by square delimiters like x[i+1]

index expressions may be any expressions within the allowed range

tuples

given α1, . . . , αn, the type α1 ∗ . . . ∗ αn is a tuple type
one can access elements of a tuple by writing x.0, . . . , x.(n-1)
index expressions must evaluate to constants at compile time

25 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Example Declarations

event bool ?x,y,!z

mem bool ?x,y,!z

event ?x,y,!z (means event bool ?x,y,!z)
event int{5} ?x,y,!z

event [7]int{5} ?x, event int y, mem bool !z

event ([7]int{5} * bool)?x
[6]([7]int{5} * bv{4})y
bool ?x,y,!z (means mem bool ?x,y,!z)
int{5} ?x,y,!z

mem bv{5} ?x,y,!z

event [7]int{5} ?x, mem int y, bool !z

([7]int{5} * bool)?x
event [6]([7]int{5} * bv{4})y

26 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Type System

we have already mentioned typical operators on the slides of the types

more operators are available like type converters

arr2bv(τ)
tup2bv(τ)
nat2bv(τ, n)
int2bv(τ, n)
bv2nat(τ)
bv2int(τ)

27 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Type System

Quartz is strongly typed,
it contains neither polymorphic nor dynamic data types

operations are bit-precise, e.g.

τ : nat{m} π : nat{n}
τ+π : nat{m+n-1}

τ : int{m} π : int{n}
τ+π : int{m+n}

τ : nat{m} π : nat{n}
τ*π : nat{(m-1)*(n-1)+1}

τ : int{m} π : int{n}
τ*π : int{m*n+1}

for a complete list, see [20]

this allows a compile-time estimation of bounds of expressions

28 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Subtypes

the type system respects subset inclusions of types, i.e.

bool is seen as equivalent to bv{1}
nat{m} is contained in nat{n} iff m<=n

nat{m} is contained in nat
nat{m} is contained in int{n} iff m<=n

int{m} is contained in int{n} iff m<=n

int{m} is contained in int
nat is contained in int

29 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Quartz Statements

we next consider the statements of the Quartz language

most of these statements have been inherited from Esterel [7, 9, 2, 3, 4]

we first consider a rather complete list of statements

their behaviors are first informally explained after these lists

and then presented formally by SOS rules

30 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

All Atomic Quartz Statements

assumptions and assertions
assume(σ); assumption
assert(σ); assertion

actions
x =τ ; immediate assignment
next(x)=τ ; delayed assignment
emit(x); immediate boolean signal emission
emit next(x); delayed boolean signal emission

wait statements
nothing; empty statement
`:pause; new macro step
`:halt; infinite loop doing nothing
`:await(σ); delayed wait on condition
`:immediate await(σ); immediate wait on condition

31 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Sequential, Parallel, and Branching Control Flow

conditional statements
if(σ) S1 conditional statement
if(σ) S1 else S2 conditional statement
choose S1 else S2 nondeterministic choice
case

(σ1) do S1

. . .
(σn) do Sn

default S

case statement

sequential and parallel control flow
S1;S2 sequential execution
S1||S2 and S1&&S2 synchronous parallel execution
S1|||S2 and S1&&&S2 asynchronous parallel execution
S1|S2 and S1&S2 interleaved parallel execution

32 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Loop Statements

loops
do S while(σ); do-loop
while(σ) S while-loop
loop S infinite loop
`:loop S each(σ); triggered infinite loop
(`1, `2):every(σ) S triggered infinite loop
(`1, `2):immediate every(σ) S triggered infinite loop

33 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Abortion and Suspension Statements

abortion
weak immediate abort S when(σ); weak immediate abortion
weak abort S when(σ); weak delayed abortion
immediate abort S when(σ); strong immediate abortion
abort S when(σ); strong delayed abortion

suspension
`:weak immediate suspend S when(σ); weak immediate suspension
weak suspend S when(σ); weak delayed suspension
`:immediate suspend S when(σ); strong immediate suspension
suspend S when(σ); strong delayed suspension

34 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Miscellaneous Statements

generic sequential and parallel control flow
choose(i=τ ..π) S generic choice
for(i=τ ..π) S generic sequence
for(i=τ ..π) do η S generic parallel statements

where η ∈ {|,||,|||,&,&&,&&&}
miscellaneous

{α x1, . . . , xn; S} local declaration
let(x=τ) S let-abbreviation
during S1 do S2 during statement
final during S1 do S2 final during statement
immediate during S1 do S2 immediate during statement
immediate final during S1 do S2 immediate final during statement
C : name(τ1, . . . , τn); module instantiation
{S} statement block

35 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

General Remarks on Statements

each statement S is started in some macro step t ∈ N and may terminate in a
step t + δ (0 ≤ δ)

if δ = 0 holds, S is called instantaneous:

its execution does not take time
execution of S does only cover micro steps

if S is not instantaneous, the control flow enters S and will stop somewhere inside
S to wait for the next macro step

due to concurrency,
the control flow may rest at several locations

it is possible, and often desirable, that statements do not terminate

36 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

assume(σ) and assert(σ)

assumptions and assertions are instantaneously executed

assume(σ)

assume(σ) tells the compiler that σ holds at this location
the compiler will not try to verify this, instead it believes the programmer

assert(σ)

assert(σ) specifies that σ should be checked at this location
verification tools will check it, and programs will fail if an assertion is violated

assumptions and assertions are a nice way to specify properties

however, they do not work in a modular verification
since they typically depend on the context

37 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

x = τ and next(x) = τ

both x = τ and next(x) = τ are instantaneously executed

x must be a writeable variable and τ must be readable

the type of τ must be contained in the type of x

otherwise, an assertion is generated to ensure containment
in cases that are clearly unsatisfiable, the type-checking fails

semantics

both statements evaluate the right hand side expression τ in the current macro step
to a value v
x = τ immediately assigns v to the writeable variable x

next(x) = τ assigns v to the writeable variable x in the next macro step

a typical error are assignments like x = x + 1

38 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

emit(x) and emit next(x)

emit(x) is always instantaneous

x must be a writeable event variable of boolean type

emit(x) is an abbreviation for x = true

emit next(x) is an abbreviation for next(x) = true

emissions are added for historic reasons
they were used as the assignments for ‘event variables’ in Esterel

39 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Further Atomic Statements

nothing does nothing and needs no time to do nothing

pause

when executed, the control flow stops here
(unless there is a surrounding abortion)
the current macro step will then end here
in the next macro step, the control is resumed from this place
(unless there is a surrounding suspension)
pause is therefore never instantaneous

halt waits for the rest of time, i.e., halt ≡ loop pause

the programmer can give the control flow locations defined by pause and halt

names in that ` :pause and ` :halt is written

40 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

[immediate] await(σ)

await(σ)

when executed, control moves to await(σ), and the macro step ends
when the execution resumes in the next macro step,
condition σ is checked
if σ holds, await(σ) instantaneously terminates
otherwise, the control remains at await(σ)

the variant immediate await(σ) differs in that σ is also checked at starting
time, i.e., when started

and σ is true, immediate await(σ) behaves as nothing

if σ is false, immediate await(σ) behaves as await(σ)

41 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Conditionals

if(σ) S1 else S2

if started, evaluate expression σ
if σ holds, immediately execute S1, otherwise execute S2

one may also write if(σ) S1 as abbreviation for if(σ) S1 else nothing

more general form:

case

(σ1) do S1

(σ2) do S2
...
(σn) do Sn

default Sn+1


≡


if(σ1) S1

else if(σ2) S2
...
else if(σn) Sn
else Sn+1


42 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Nondeterministic Choice

choose S1 else S2

whenever started, a nondeterministic choice is made to decide whether S1 or S2 is
executed
thus, it behaves like if(x) S1 else S2 with an oracle input x

the statement is not intended for implementing deterministic controllers

it is, however, useful for modeling the behavior of environments

and also for writing test cases for simulation

43 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1;S2

sequence S1;S2 is executed as follows

when started at time t, start S1 immediately at time t
if S1 terminates at time t + δ1, then S2 is started at time t + δ1

note that δ1 = 0 may hold, which implies that S1 and S2 are then both started at
time t
S1;S2 terminates if S2 terminates
S1;S2 is instantaneous if both S1 and S2 are instantaneous

moving the control from S1 to S2 does not take time

 the sequence operation does not take time

44 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1||S2

synchronous parallel S1||S2 is executed as follows:

if S1||S2 is started at time t, S1 and S2 are started at time t
if S1 and S2 terminate at time t + δ1 and t + δ2, respectively, then S1||S2

terminates at time t + max({δ1, δ2})
as long as the control is inside S1 and S2, both S1 and S2 execute their macro steps
synchronously in lockstep
S1 and S2 may interact during concurrent execution

curly braces {. . .} are used to determine priorities to avoid ambiguities due to the
grammar:
P1;P2||Q1;Q2 is parsed as P1; {P2||Q1};Q2

45 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1|S2

interleaved parallel S1|S2 is executed as follows:

if S1|S2 is started at time t, S1 and S2 are started at time t
if S1 and S2 terminate at time t + δ1 and t + δ2, respectively, then S1|S2 terminates
at time t + max({δ1, δ2})
as long as the control is inside S1 and S2, a nondeterministic choice is made on
whether the step of S1 or the step of S2 is executed

similar to timesharing of tasks running on a single processor

46 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1|||S2

asynchronous parallel S1|||S2 of S1 and S2 is executed as follows:

if S1|||S2 is started at time t, S1 and S2 are started at time t
if S1 and S2 terminate at time t + δ1 and t + δ2, respectively, then S1|||S2

terminates at time t + max({δ1, δ2})
as long as the control is inside S1 and S2, at least one of the steps of S1 and S2 is
executed

thus, S1|||S2 is somehow the union of S1|S2 and S1||S2

47 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1|S2, S1||S2, and S1|||S2

module →
Test(event →
[4]bool a,b) {

{emit(a[0]);
p1: pause;
emit(a[1]);
p2: pause;
emit(a[2]);
p3: pause;
emit(a[3]);

}

||

{emit(b[0]);
q1: pause;
emit(b[1]);
q2: pause;
emit(b[2]);
q3: pause;
emit(b[3]);

}

}

using ||, the only behavior is to emit a[i]
and b[i] in step i

using |, first a[0] and b[0], and afterwards,
exactly one of the a[i] and b[j] is emitted

using |||, first a[0] and b[0], and
afterwards, either one or both of a[i] and
b[j] is emitted

in all cases, the emissions on a and those of
b appear in the order a[0],. . . ,a[3] and
b[0],. . . ,b[3]

48 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

S1&S2, S1&&S2 and S1&&&S2

S1&S2, S1&&S2 and S1&&&S2 are variants of S1|S2, S1||S2 and S1|||S2

at starting time, both S1 and S2 are started
if S1 and S2 terminate at time t + δ1 and t + δ2, respectively, then S1&S2, S1&&S2

and S1&&&S2 terminate at time t + min({δ1, δ2})
recall that S1|S2, S1||S2 and S1|||S2 terminate at time t + max({δ1, δ2})

the difference is only the termination

the first statement Si that terminates aborts the execution of the other one

49 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

General Remarks on Loop Statements

Quartz knows several loop statements

loop S
do S while(σ);
while(σ) S
loop S each(σ);
every(σ) S

these are described on the following slides

very important: body statement must not be instantaneous

every macro step should consist of finitely many micro steps

50 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

loop S

loop S is executed as follows:

first, S is executed
if S terminates at time t + δ,
then S is again started at time t + δ

 loop S is equivalent to S;loop S

we will see later that abortion statements can abort such loops

51 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

do S while(σ)

do S while(σ) is executed as follows:

if started at time t, S is started at time t without checking σ
if S terminates at time t + δ, then

σ is evaluated
if σ is true, then do S while(σ) is executed again
if σ is false, then the loop terminates

 loop S can be rewritten as do S while(true)

52 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

while(σ) S

while(σ) S is executed as follows:

first, σ is evaluated
if σ is true, then do S while(σ) is executed
if σ is false, then the loop terminates instantaneously

 while(σ) S can be rewritten as if(σ) do S while(σ)

53 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

loop S each(σ) and every(σ) S

loop S each(σ) is executed as follows:

when started, S is started while ignoring σ
while S is running, condition σ is evaluated in each macro step

if σ is false, the execution of S is not disturbed
if σ is true, then the current execution of S is aborted,
and loop S each(σ) is re-started

moreover, if S should terminate before σ became true,
then the statement waits for the next macro step where σ holds, and re-starts then
loop S each(σ)

[immediate] every(σ) S can be replaced by

[immediate] await(σ); loop S each(σ)

54 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Abortion Statements

abort comes in four variants:
abort S when(σ)
weak abort S when(σ)
immediate abort S when(σ)
weak immediate abort S when(σ)

abort S when(σ) is executed as follows
when started, S is started and σ is ignored
while S is running, σ is evaluated in each macro step

if σ is false, the execution of S is not disturbed
if σ is true, then the current execution of S is aborted, i.e.,
the abortion statement instantaneously terminates,
none of the micro steps to be executed by S in that step are executed

strong abortion means: check abortion due to σ before executing the micro steps
of S
immediate abort S when(σ) means if(!σ) abort S when(σ)

55 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Weak Abortion Statements

weak abort S when(σ) is executed as follows

when started, S is started and σ is ignored
while S is running, σ is evaluated in each macro step

if σ is false, the execution of S is not disturbed
if σ is true, then
the current execution of S is aborted, i.e.,
the abortion statement instantaneously terminates,
all of the micro steps to be executed by S in that step are nevertheless executed

weak abortion means: check abortion due to σ after executing the micro steps of
S

weak immediate abort S when(σ) analogously checks also σ at starting time

56 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Suspension Statements

suspend statement comes also in four variants:
suspend S when(σ)
weak suspend S when(σ)
immediate suspend S when(σ)
weak immediate suspend S when(σ)

suspend S when(σ) is executed as follows
when started, S is started and σ is ignored
while S is running, σ is evaluated in each macro step

if σ is false, the execution of S is not disturbed
if σ is true, then the current execution of S is suspended, i.e.,
the control flow remains at the current locations in S ,
and none of the micro steps to be executed by S in that step are executed

strong suspension means: check suspension due to σ before executing the micro
steps of S

57 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Suspension Statements

weak suspend S when(σ) is executed as follows
when started, S is started and σ is ignored
while S is running, σ is evaluated in each macro step

if σ is false, the execution of S is not disturbed
if σ is true, then the current execution of S is weakly suspended, i.e.,
the control flow remains at the current locations in S ,
and all of the micro steps to be executed by S in that step are executed

weak suspension means: check suspension due to σ after executing the micro
steps of S
weak suspension can implement loops, e.g.

weak suspend
pause;
next(x) = x+1;

when(true);
58 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Generic Statements

Quartz has several generic statements:

choose(i=τ..π) S
for(i=τ..π) S (generic sequence)
for(i=τ..π) do η S where η ∈ {|,||,|||,&,&&,&&&}

their meaning is as follows

expressions τ and π are evaluated
then, variable i is replaced in S by all numbers {τ, . . . , π} to obtain instances Si
these instances are then combined by ;,|,||,|||,&,&&,&&& or choose to obtain
non-generic statements

note that all of these operations are associative!

59 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Local Variable Declarations and Let-Abbreviations

{α x1, . . . , xn; S}
new variables x1, . . . , xn are declared
they can be read and written in S
they are not known outside S
shadowing is currently not allowed (i.e., none of the xi must already exists)
α must specify the storage class and the data type of the xi

let(x=τ) S

simply abbreviates τ in S by x

its implementation does not even require a new variable

60 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

[immediate] [final] during S1 do S2

S2 must always be instantaneous

during S1 do S2 is executed as follows:

when started, start S1 and and ignore S2

while S1 is running, but not terminating, extend the macro steps of S1 with those of
S2

immediate during S1 do S2

adds S2 also at starting time of S1

final during S1 do S2

adds S2 also at termination time of S1

immediate final during S1 do S2

adds S2 both at starting and at termination time of S1

61 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Example Programs: Button, ABRO, Speed

to conclude the informal introduction, let’s consider some example programs

62 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

A Simple Button

Example

module bt(event ?pressed ,

!stOff ,!stOn) →
{

loop {

abort
loop {

emit(stOff);
pause;

}

when(pressed);
abort

loop {

emit(stOn);
pause;

}

when(pressed);
}

}

when started, emit(stOff); is
executed

this is repeated until pressed
occurs

then, emit(stOn); is executed
until pressed occurs again

and this repeats forever

63 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Example: ABRO

ABRO

The system has boolean inputs a, b, r , and an output o. Output o shall be true as
soon as both inputs a and b have been true. This behavior should be restarted if r is
true.

problem: what if a, b and r are true at the same time?

→ should we make o present?

64 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Mealy Machine for ABRO

ab
r/
o abr/o

abr/o

∗br/o

∗∗
r/
o

a∗
r/
o

∗∗r/o

∗∗r/o

circles are automaton states

label abr/o means: if a = true and
b = r = false is read, then output
o = true is generated

default behavior: remain in state

finite state machines are perfectly
synchronous!

 use finite state machines to explain
the semantics

65 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Quartz Program ABRO

Example (ABRO)

module ABRO(event ?a,?b,?r,!o) {

loop
abort {

await(a); || await(b);
emit(o);
await(r);

} when(r);
}

66 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

ABRO for More Inputs

Example (ABCRO)

module ABCRO(event →
?a,?b,?c,?r,!o) {

loop
abort {

await(a); ||

await(b); ||

await(c);
emit(o);
await(r);

} when(r);
}

ABRO can be easily
extended to more events

only add new thread
await(c)

for n inputs, program has
size O(n)

but the finite state machine
has O(2n) states

67 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Program Speed

Example (Speed)

The system has inputs cm and sec. If sec holds, the number of macro steps where cm

hold so far (not the current one) should be emitted via signal speed. The counter
should be reset also at this point of time, and if cm should hold together with sec, this
instance of cm should count for the next emission of the speed instead of the current
one. This behavior should be repeated forever.

problem: what if cm and sec hold at the same time?

we first exclude this case and consider solutions for that later

68 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Program Speed

Example (Speed (Incorrect))

module Speed (event ?cm , ? sec , nat →
! speed) {
nat d i s t ;
loop {

d i s t = 0 ;
abort {

every (cm)
next (d i s t) = d i s t + 1 ;

} when (s e c) ;
speed = d i s t ;

}
}

the behavior is quite involved

we learn later that the system always acts as
follows:

if sec, assign speed = 0 and dist = 0

if !cm&!sec do nothing
if cm&!sec, assign next(dist)= dist+1

this yields a write conflict if at some time t,
we have cm&!sec and at t + 1, we have sec

since then dist will be possibly assigned
different values

moreover, if cm&sec holds, cm is not
counted!

69 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Weak Abortion in Program Speed

Example (Speed (Incorrect))

module Speed (event ?cm , ? sec , nat →
! speed) {
nat d i s t ;
loop {

d i s t = 0 ;
weak abort {

every (cm)
next (d i s t) = d i s t + 1 ;

} when (s e c) ;
speed = d i s t ;

}
}

we may use a weak abortion?

after initialization, we have again two states
s0 and s1 with the same dataflow

if cm assign next(dist)= dist+1

if sec assign dist = 0

if sec assign speed = dist

Z=⇒ all cm are counted, but write conflict on
dist remains

70 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Immediate Abortion in Program Speed

Example (Speed (Incorrect))

module Speed (event ?cm , ? sec , nat →
! speed) {
nat d i s t ;
loop {

d i s t = 0 ;
immediate abort {

every (cm)
next (d i s t) = d i s t + 1 ;

} when (s e c) ;
speed = d i s t ;

}
}

we may use an immediate abortion?

after initialization, we have again two states
s0 and s1 with the same dataflow

if cm&!sec assign next(dist)= dist+1

if sec assign dist = 0

if sec assign speed = dist

Z=⇒ now the write conflict on dist is resolved,
by in case of cm&!sec, the cm signal is not
counted!

Z=⇒ moreover, the loop body is now
instantaneous

71 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Fixing the Problem by Reincarnation of Local Variables

Example (Speed (Correct))

module Speed (event ?cm , ? sec , nat →
! speed) {
loop {

weak abort {
nat d i s t ;
d i s t = 0 ;
if (cm) next (d i s t) = d i s t +1;
do {

s0 : pause ;
if (cm) next (d i s t) = →

d i s t +1;
} while (! s e c) ;
speed = d i s t ;

} when (s e c) ;
}

}

the program has then the following actions

if cm&!sec, assign next(dist)= dist+1

if cm& sec, assign
next(dist)= dist@1+1

if sec, assign dist@1 = 0

if sec, assign speed = dist

Z=⇒ every cm is counted

Z=⇒ write conflict on dist is resolved by
reincarnation

72 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Modules
Declarations: Flows, Data Types and Storage Classes
Expressions
Statements
Example Programs: Button, ABRO, Speed

Yet another corrected version

Example (Speed (Correct))

module Speed (event ?cm , ? sec , nat →
! speed) {

nat d i s t ;
loop {

if (s e c) speed = d i s t ;
case

(! cm&! s e c) do next (d i s t) = d i s t ;
(! cm& s e c) do next (d i s t) = 0 ;
(cm&! s e c) do next (d i s t) = →

d i s t +1;
(cm& s e c) do next (d i s t) = 1 ;

default nothing ;
s0 : pause ;

}
}

the program has then the following actions

if !cm&!sec, assign next(dist)= dist

if !cm& sec, assign next(dist)= 0

if cm&!sec, assign next(dist)= dist+1

if cm& sec, assign next(dist)= 1

if sec, assign speed = dist

Z=⇒ every cm is counted; reset and increment is
resolved by assigning 1

Z=⇒ no reincarnation and no additional variable is
used

73 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Core Statements

the informal description of the behavior of statements is way too imprecise

there is a tight interaction of concurrent control flows

we have to formally specify the precise behavior of the statements

in the following, we define an operational semantics

to this end, we first reduce the set of statements to a smaller set of core
statements

74 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Core Statements

nothing (empty statement)
` : pause (new macro step)

x = τ, next(x) = τ (assignments)
if(σ) S1 else S2 (conditional)

S1; S2 (sequence)
S1 ‖ S2 (synchronous concurrency)

do S while(σ) (loop)
[weak] [immediate] abort S when(σ) (abortion statements)

[weak] [immediate] suspend S when(σ) (suspension statements)
{α x ;S} (local variable declaration)

75 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Simple Macro Definitions

emit(x); :≡ x = true;

emit next(x); :≡ next(x) = true;

`:halt :≡ do `:pause; while(true);

`:await(σ) :≡ do `:pause; while(!σ);

`:immediate await(σ) :≡ while(σ) `:pause;

while(σ) S :≡ if(σ) do S while(σ);

loop S :≡ do S while(true);

loop S each(σ) :≡ loop abort {S; halt;} when(σ);

every(σ) S :≡ await(σ); loop S each(σ);

immediate every(σ) S :≡ immediate await(σ); loop S each(σ);

76 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Replacing Nondeterminism by Oracles

the following statements are nondeterministic:

choose S1 else S2

S1|S2 and S1|||S2

S1&S2 and S1&&&S2

we can replace them by asking new boolean input variables for the
nondeterministic choices

in case of choose S1 else S2, this is trivial

for the other statements, we wrap each Si into a suspend statement and ask
oracles which of the possible executions should be performed

77 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Eliminating P&&Q

Example (Eliminating P&&Q)

event tP ,tQ;

{weak abort
P;

emit(tP);
when(tQ)

}

||

{weak abort
Q;

emit(tQ);
when(tP)

}

78 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Eliminating during P do Q

Example (Eliminating during P do Q)

{event t;

P;

emit(t);
}

||

immediate abort
loop {

pause;
Q;

}

when(t)

79 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Eliminating immediate during P do Q

Example (Eliminating immediate during P do Q)

{event t;

P;

emit(t);
}

||

{Q;

immediate abort
loop {

pause;
Q;

}

when(t)}

80 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Eliminating final during P do Q

Example (Eliminating final during P do Q)

{event t;

P;

emit(t);
}

||

immediate weak abort
loop {

pause;
Q;

}

when(t)

81 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Eliminating immediate final during P do Q

Example (Eliminating immediate final during P do Q)

{event t;

P;

emit(t);
}

||

{Q;

immediate weak abort
loop {

pause;
Q;

}

when(t)}

82 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Uniqueness of Core Language?

are there alternatives for defining a core language?

of course, there are many alternatives, for example:

pause; ≡ await(true);

pause; ≡ abort halt; when(true)

83 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Redundancy of Core Language

some variants of abort and suspend could be eliminated as well

immediate abort S when(σ) is equivalent to
if(σ) nothing else abort S when(σ)

however, this is not so simple with the weak version

even pause can be eliminated

pause ≡


abort

immediate suspend

nothing

when(true)

when(true)


nevertheless, the chosen subset is reasonable

84 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Operational Semantics

we now formally define the semantics

it is an operational semantics, thus an interpreter can be implemented this way

two steps are formalized

transition of the control flow for a full variable environment by SOS transition rules
computation of the reaction, i.e. the full variable environment of a macro step by
SOS reaction rules

85 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

SOS Transition Rules

SOS (structural operational semantics) is a way to describe semantics which goes
back to Plotkin [14]

SOS transition rules of Quartz describe the movement of the control flow
inputs are

statement S
environment E (knows the value E(x) of each variable x)

outputs are

statement S ′, which has to be executed next
actions D (assignments) performed by S in this macro step
termination flag b ∈ {true, false}

 problem: to apply the rules, one must know the values of all variables, in
particular the values of the output variables

86 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

SOS Transition Rules

Transition Rule

〈E ,S〉�Q 〈S ′,D, t〉

E : environment of the current macro step

S : statement to be executed

S ′: residual statement for the next micro or macro step (depending on t)

D: actions that are executed in the current step

t: instantaneous flag; micro step if true, macro step otherwise

87 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

SOS Transition Rules with Assumptions

Transition Rule

ϕ1 . . . ϕn

〈E ,S〉�Q 〈S ′,D, t〉

some transition rules have assumptions

if conditions ϕ1,. . . ,ϕn are true, then we can conclude that also
〈E , S〉�Q 〈S ′,D, t〉 holds

88 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Invariant for Instantaneous Executions

Transition Rule

〈E ,S〉�Q 〈S ′,D, true〉

the SOS transition rules maintain the following invariant:

if the instantaneous execution flag is true, we know that S ′ is equivalent to
nothing;

S ′ could be something like nothing;||nothing;

89 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Environments and Evaluation of Expressions

the environment E is a function that maps variables to values

this models the memory of the program

we write JτKE to evaluate an expression τ in environment E
for example, E(x) = 3 and E(y) = 5 implies Jx + yKE = 8

due to synchrony, environments are constant within a macro step

90 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Atomic Statements

〈E , nothing〉�Q 〈nothing, {}, true〉

〈E , ` : pause〉�Q 〈nothing, {}, false〉

〈E , x=τ〉�Q 〈nothing, {x=τ}, true〉

〈E , next(x)=τ〉�Q 〈nothing, {next(x)=τ}, true〉

91 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Conditional

JσKE = true and 〈E ,S1〉�Q 〈S ′1,D1, t1〉
〈E , if(σ) S1 else S2〉�Q 〈S ′1,D1, t1〉

JσKE = false and 〈E ,S2〉�Q 〈S ′2,D2, t2〉
〈E , if(σ) S1 else S2〉�Q 〈S ′2,D2, t2〉

92 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Sequence

〈E , S1〉�Q 〈S ′1,D1, false〉
〈E , {S1;S2}〉�Q 〈{S ′1;S2},D1, false〉

〈E ,S1〉�Q 〈S ′1,D1, true〉 〈E ,S2〉�Q 〈S ′2,D2, t2〉
〈E , {S1;S2}〉�Q 〈S ′2,D1 ∪ D2, t2〉

93 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Parallel Statement

〈E ,S1〉�Q 〈S ′1,D1, t1〉 〈E ,S2〉�Q 〈S ′2,D2, t2〉
〈E , {S1 ‖ S2}〉�Q 〈{S ′1 ‖ S ′2},D1 ∪ D2, t1 ∧ t2〉

94 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

do S while(σ) and while(σ) S

〈E , S〉�Q 〈S ′,D, false〉
〈E , do S while(σ)〉�Q 〈{S ′; while(σ) S},D, false〉

JσKE = false

〈E , while(σ) S〉�Q 〈nothing, {}, true〉

JσKE = true and 〈E ,S〉�Q 〈S ′,D, false〉
〈E , while(σ) S〉�Q 〈{S ′; while(σ) S},D, false〉

95 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Strong Delayed Abort

〈E ,S〉�Q 〈S ′,D, true〉
〈E , abort S when(σ)〉�Q 〈nothing,D, true〉

〈E , S〉�Q 〈S ′,D, false〉

〈E , abort S when(σ)〉�Q 〈
[
immediate abort S ′

when(σ)

]
,D, false〉

96 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Strong Immediate Abort

JσKE = true

〈E ,
[
immediate abort S
when(σ)

]
〉�Q 〈nothing, {}, true〉

JσKE = false and 〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[
immediate abort S
when(σ)

]
〉�Q 〈nothing,D, true〉

JσKE = false and 〈E ,S〉�Q 〈S ′,D, false〉

〈E ,
[
immediate abort S
when(σ)

]
〉�Q 〈

[
immediate abort S ′

when(σ)

]
,D, false〉

97 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Weak Delayed Abort

〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[
weak abort S
when(σ)

]
〉�Q 〈nothing,D, true〉

〈E ,S〉�Q 〈S ′,D, false〉

〈E ,
[
weak abort S
when(σ)

]
〉�Q 〈

[
weak immediate abort S ′

when(σ)

]
,D, false〉

98 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Weak Immediate Abort

JσKE = true and 〈E ,S〉�Q 〈S ′,D, t〉

〈E ,
[
weak immediate abort S
when(σ)

]
〉�Q 〈nothing,D, true〉

JσKE = false and 〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[
weak immediate abort S
when(σ)

]
〉�Q 〈nothing,D, true〉

JσKE = false and 〈E , S〉�Q 〈S ′,D, false〉

〈E ,
[

weak immediate abort S
when(σ)

]
〉�Q 〈

[
weak immediate abort S ′

when(σ)

]
,D, false〉

99 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Strong Delayed Suspend

〈E ,S〉�Q 〈S ′,D, true〉
〈E , suspend S when(σ)〉�Q 〈nothing,D, true〉

〈E ,S〉�Q 〈S ′,D, false〉

〈E , suspend S when(σ)〉�Q 〈
[
immediate suspend S ′

when(σ)

]
,D, false〉

100 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Strong Immediate Suspend

JσKE = true

〈E ,
[

immediate suspend S
when(σ)

]
〉�Q 〈

[
immediate suspend S
when(σ)

]
, {}, false〉

JσKE = false and 〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[

immediate suspend S
when(σ)

]
〉�Q 〈nothing,D, true〉

JσKE = false and 〈E , S〉�Q 〈S ′,D, false〉

〈E ,
[

immediate suspend S
when(σ)

]
〉�Q 〈

[
immediate suspend S ′

when(σ)

]
,D, false〉

101 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Weak Delayed Suspend

〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[
weak suspend S
when(σ)

]
〉�Q 〈nothing,D, true〉

〈E ,S〉�Q 〈S ′,D, false〉

〈E ,
[

weak suspend S
when(σ)

]
〉�Q 〈

[
weak immediate suspend S ′

when(σ)

]
,D, false〉

102 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Weak Immediate Suspend

JσKE = true and 〈E ,S〉�Q 〈S ′,D, t〉

〈E ,
[

weak immediate suspend S
when(σ)

]
〉�Q 〈

[
weak immediate suspend S
when(σ)

]
,D, false〉

JσKE = false and 〈E ,S〉�Q 〈S ′,D, true〉

〈E ,
[

weak immediate suspend S
when(σ)

]
〉�Q 〈nothing,D, true〉

JσKE = false and 〈E , S〉�Q 〈S ′,D, false〉

〈E ,

 weak immediate suspend

S
when(σ)

〉�Q 〈

 weak immediate suspend

S ′

when(σ)

 ,D, false〉

103 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Computing the Reaction

using the SOS transition rules, we can compute the statement that has to be
executed in the next macro step

this is the update of the internal control flow state

it remains to determine the outputs for given inputs and a given statement

to this end, we make use of SOS reaction rules

these rules work with an incomplete environment E
this environment E is then completed step by step

to this end, we estimate the sets of assignments that must/can be executed

104 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Incomplete Environments

to compute the reactions,
we start with an incomplete environment E0

E0 has known values for all inputs

but has no values for the outputs

to this end, we make use of the value ⊥ that indicates that a value is not yet
known

initially, we thus have E0(x) = ⊥ for all outputs

we also introduce > meaning that the value cannot be computed due to a
runtime error

105 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Information Ordering

on D ∪ {⊥,>}, we introduce a partial order relation � as follows

x � y :⇔ (x = ⊥) ∨ (x = y) ∨ (y = >)

x � y means that y contains more information than x
� is not a total order (e.g. neither 0 � 1 nor 1 � 0 holds)
� is a lattice, since for all elements x , y ,
we have sup({x , y}) and inf({x , y})
e.g. for booleans, we have

⊥

0 1

>
sup() ⊥ 0 1 >
⊥ ⊥ 0 1 >
0 0 0 > >
1 1 > 1 >
> > > > >

inf() ⊥ 0 1 >
⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥ 0
1 ⊥ ⊥ 1 1
> ⊥ 0 1 >

106 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Four-Valued Logic

we extend all operations on D ∪ {⊥,>}
typically ⊥� x = ⊥
however, sometimes ⊥� x 6= ⊥, since the result is already determined by one of
the arguments, e.g.:

∧ ⊥ 0 1 >
⊥ ⊥ 0 ⊥ >
0 0 0 0 >
1 ⊥ 0 1 >
> > > > >

∨ ⊥ 0 1 >
⊥ ⊥ ⊥ 1 >
0 ⊥ 0 1 >
1 1 1 1 >
> > > > >

x ¬x
⊥ ⊥
0 1
1 0
> >

Why are these four-valued extensions of the boolean operations chosen?

107 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Four-Valued Logic

Are the definitions of the four-valued functions unique?

we have to maintain the values for boolean operands, and we have to enforce
monotonicity:

x1 � x2 ∧ y1 � y2 → x1 � y1 � x2 � y2

to allow progress of information, we also want ⊥∧ 0 = 0 ∧⊥ = 0 and analogously
⊥ ∨ 1 = 1 ∨ ⊥ = 1

based on these requirements, still many definitions are possible (see next slide)

Z=⇒ the greatest ones are chosen

further enforcing commutativity for conjunction and disjunction reduces this to
nine definitions (greatest ones are retained)

108 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Four-Valued Logic (81 Solutions for Conjunction)

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

109 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Four-Valued Logic (81 Solutions for Disjunction and Conjunction)

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

110 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Four-Valued Logic (All Solutions for Commutative Con-/Disjunction)

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ ⊥ 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 0

1 ⊥ 0 1 ⊤

⊤ 0 0 ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ 0

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ 0 ⊥ ⊤

0 0 0 0 ⊤

1 ⊥ 0 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ ⊥ ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊥ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 0

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 0 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ 1

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤

0 ⊥ 0 1 ⊤

1 ⊥ 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 1

⊤ 1 ⊤ 1 ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 1

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ 1 ⊤ ⊤ ⊤

⊥ 0 1 ⊤

⊥ ⊥ ⊥ 1 ⊤

0 ⊥ 0 1 ⊤

1 1 1 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

there are nine solutions

these form a lattice

hence, there is a greatest and a least
four-valued extension

one could prefer the one that contains most
boolean values (as we did)

or the greatest solution which is strict in the
sense that one operand’s failed evaluation is
not overwritten by the other operand

in what follows, the particular choice does
not matter

111 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Lattice of Incomplete Environments

for a given program P, we consider the set EP of all incomplete environments E
mapping the variables of P to values according to their types including ⊥ and >
we also introduce a partial order relation on environments as follows

E1 v E2 :⇔ ∀x ∈ V. E1(x) � E2(x)

E1 v E2 means that E2 contains more information than E1

(EP ,v) is a lattice:

Esup(x) := sup({E1(x), E2(x)})
Einf(x) := inf({E1(x), E2(x)})

112 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Evaluation of Expressions using incomplete Environments

given an incomplete environment E , and a program expression σ, we define its
evaluation JσKE as expected, i.e.,

for variables x , we define JxKE := E(x)
for operators �, we define Jσ1 � σ2KE := Jσ1KE � Jσ2KE

to this end, we make use of the function tables

and can thus sometimes evaluate expressions where one argument is ⊥ to values
different to ⊥
this way, we can evaluate expressions to known values even though the
environment is incomplete

this can be used to obtain a progress in information

113 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Current Reactions as Fixpoints

for a program P, we will define a function fP that maps an environment E ∈ EP

to another environment fP(E) ∈ EP

fP will be continuous w.r.t. v,
and thus, we can compute its least fixpoint

the current reaction E of P is the least fixpoint of fP

P is causally correct iff all variables have known values in E
the definition of fP is however not that easy

we first have to consider SOS reaction rules and will then define fP

114 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

SOS Reaction Rules

SOS Reaction Rule

〈E , S〉#Q 〈Dmust,Dcan, tmust, tcan〉

E : environment of the current macro step

S : statement to be executed

Dmust: immediate actions that must be executed

Dcan: immediate actions that can be executed

tmust: holds iff S must be instantaneously executed

tcan: holds iff S can be instantaneously executed

note Dmust ⊆ Dcan and tmust → tcan

115 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

SOS Reaction Rules

SOS reaction rules are recursively defined for the statements

analogously to the SOS transition rules, we have assumptions and conclusions

we now consider the SOS reaction rules for all core statements

and then continue with the definition of the current reaction as a least fixpoint

tmust and tcan encode instantaneous execution as follows:

tmust tcan instant
false false false
false true ⊥
true false −−
true true true

116 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Atomic Statements

〈E , nothing〉#Q 〈{}, {}, true, true〉

〈E , ` : pause〉#Q 〈{}, {}, false, false〉

〈E , x=τ〉#Q 〈{(x = τ)}, {(x = τ)}, true, true〉

〈E , next(x)=τ〉#Q 〈{}, {}, true, true〉

117 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Conditional

JσKE = true 〈E ,S1〉#Q 〈D1
must,D1

can, t
1
must, t

1
can〉

〈E , if(σ) S1 else S2〉#Q 〈D1
must,D1

can, t
1
must, t

1
can〉

JσKE = false 〈E ,S2〉#Q 〈D2
must,D2

can, t
2
must, t

2
can〉

〈E , if(σ) S1 else S2〉#Q 〈D2
must,D2

can, t
2
must, t

2
can〉

JσKE = ⊥ 〈E , S1〉#Q 〈D1
must,D1

can, t
1
must, t

1
can〉 〈E , S2〉#Q 〈D2

must,D2
can, t

2
must, t

2
can〉

〈E , if(σ) S1 else S2〉#Q 〈D1
must ∩ D2

must,D1
can ∪ D2

can, t
1
must ∧ t2

must, t
1
can ∨ t2

can〉

118 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Sequence

〈E ,S1〉#Q 〈D1
must,D1

can, false, false〉
〈E , {S1;S2}〉#Q 〈D1

must,D1
can, false, false〉

〈E ,S1〉#Q 〈D1
must,D1

can, false, true〉 〈E ,S2〉#Q 〈D2
must,D2

can, t
2
must, t

2
can〉

〈E , {S1;S2}〉#Q 〈D1
must,D1

can ∪ D2
can, false, t2

can〉

〈E ,S1〉#Q 〈D1
must,D1

can, true, true〉 〈E ,S2〉#Q 〈D2
must,D2

can, t
2
must, t

2
can〉

〈E , {S1;S2}〉#Q 〈D1
must ∪ D2

must,D1
can ∪ D2

can, t
2
must, t

2
can〉

119 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Parallel Statement

〈E ,S1〉#Q 〈D1
must,D1

can, t
1
must, t

1
can〉 〈E ,S2〉#Q 〈D2

must,D2
can, t

2
must, t

2
can〉

〈E , {S1 ‖ S2}〉#Q 〈D1
must ∪ D2

must,D1
can ∪ D2

can, t
1
must ∧ t2

must, t
1
can ∧ t2

can〉

120 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Loops

〈E , S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , do S while(σ)〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = false

〈E , while(σ) S〉#Q 〈{}, {}, true, true〉

JσKE = true 〈E , S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , while(σ) S〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = ⊥ 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , while(σ) S〉#Q 〈{},Dcan, false, true〉

121 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Abort (1/2)

〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , [weak] abort S when(σ)〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = false 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , [weak] immediate abort S when(σ)〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = true 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , weak immediate abort S when(σ)〉#Q 〈Dmust,Dcan, true, true〉

JσKE = true
〈E , immediate abort S when(σ)〉#Q 〈{}, {}, true, true〉

122 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Abort (2/2)

JσKE = ⊥ 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , weak immediate abort S when(σ)〉#Q 〈Dmust,Dcan, tmust, true〉

JσKE = ⊥ 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , immediate abort S when(σ)〉#Q 〈{},Dcan, tmust, true〉

123 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Suspend (1/2)

〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , [weak] suspend S when(σ)〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = false 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , [weak] immediate suspend S when(σ)〉#Q 〈Dmust,Dcan, tmust, tcan〉

JσKE = true 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , weak immediate suspend S when(σ)〉#Q 〈Dmust,Dcan, false, false〉

JσKE = true
〈E , immediate suspend S when(σ)〉#Q 〈{}, {}, false, false〉

124 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Suspend (2/2)

JσKE = ⊥ 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , immediate suspend S when(σ)〉#Q 〈{},Dcan, false, tcan〉

JσKE = ⊥ 〈E ,S〉#Q 〈Dmust,Dcan, tmust, tcan〉
〈E , weak immediate suspend S when(σ)〉#Q 〈Dmust,Dcan, false, tcan〉

125 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Current Reactions as Fixpoints

recall that we wanted to define a function fP for a program P that maps
environments to environments so that E v fP(E) holds

to this end, we will make use of the SOS reaction rules

we assume that the SOS reaction rules are implemented in a function ReactSOS

that computes for inputs (E ,S) the pair (Dmust,Dcan) (we do not need tmust, tcan)

by Dmust and Dcan, we then determine a new environment E ′

126 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Completing Environments – Function fP

by Dmust and Dcan, we then determine a new environment E ′ as follows:

define Dxmust as the assignments x=τ of Dmust writing to x

let Dxmust = {x=τ1, . . . , x=τn} 6= {}
update E such that E(x) := sup {JxKE , Jτ1KE , . . . , JτnKE}
note that writing ⊥ and a known value v yields E(x) = v
note that writing value v1 6= v2 with vi 6= ⊥ yields E(x) = >

define Dxcan as the assignments x=τ of Dcan writing to x

assume Dxcan = {} Z=⇒ no immediate assignment can write to x

if JxKE 6= ⊥, x already has a value due to delayed assignments of the previous step
thus, we apply the reaction to absence if Dxcan = {} ∧ JxKE = ⊥:

if x is an event variable, set E(x) to its default value
if x is a memorized variable, set E(x) to the previous value
(or the default value when the initial reaction is computed)

127 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Current Reaction as Least Fixpoint

the updates described on the previous slide define a function UpdateEnv (which is
the previously mentioned function fP)

recall our partial orders

x � y :⇔ (x = ⊥) ∨ (x = y) ∨ (y = >)
E1 v E2 :⇔ ∀x ∈ V. E1(x) � E2(x)

it is easily seen that UpdateEnv is monotonous

since P has only finitely many variables,
we have a finite lattice

and therefore UpdateEnv is continuous, and thus, we can compute its least
fixpoint by the Tarski-Knaster iteration

current reaction is the least fixpoint of UpdateEnv

128 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Compute Current Reaction

function ComputeReaction(E ,S , Epre)
do
Eold := E ;
(Dmust,Dcan) := ReactSOS(E ,S);
E := UpdateEnv(Dmust,Dcan, Eold, Epre)

while Eold 6= E
return E

starting with an incomplete environment E and the previous environment Epre, we
compute Dmust and Dcan by the SOS reaction rules

then, we update the environment E by Dmust and Dcan

and repeat this until a fixpoint is obtained

129 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Quartz Interpreter

function InterpretQuartz(S)
Epre := Edef ; // default values for all variables
Ddel := {}; // no delayed actions at the beginning
do
Ein := ReadInputs();
Einit := UpdateDelayedActs(Ddel, Epre);
E := ComputeReaction(Einit,S , Epre);
if ∃x ∈ V. E(x) ∈ {⊥,>} then fail;
(S ′,D, t) := TransSOS(S , E);
Ddel := delayed actions of D;
S := S ′;
Epre := E ;

while(¬t);

130 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Constructive Programs

the interpreter on the previous slide computes the reactions and control flow
updates for any constructive program

after reading new inputs, we have Ein

we then evaluate the delayed assignments Ddel obtained by SOS transition rules of
the previous reaction in the previous environment Epre and update Ein thereby to Einit

using Einit, we compute E by ComputeReaction (i.e. SOS reaction rules)
using E , we compute (S ′,D, t) by the SOS transition rules
we repeat this until the program terminates

programs where the least fixpoint contains either ⊥ or > are not causally correct

therefore the interpreter fails in these cases

131 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Relationship between 2-Value and 4-Valued Solutions

consider any function f (x0, . . . , xn−1) = (ϕ0, . . . , ϕn−1) with propositional logic
formulas ϕ on the variables x0, . . . , xn−1

let x̌ = (x̌0, . . . , x̌n−1) be the least fixpoint, i.e., x̌ = f (x̌)

Theorem: If x̌i ∈ B, then we have for all y ∈ Bn with y = f (y) that yi = x̌i . The
converse is however false.

proof:

consider any boolean solution y ∈ Bn with y = f (y)
x̌ � y since y is a fixpoint and x̌ is the least fixpoint
hence, x̌i � yi holds for i = 0, . . . , n − 1
if both x̌i ∈ B and yi ∈ B holds, this implies x̌i = yi

Corollary: If x̌ is the least fixpoint of f , and x̌ ∈ Bn holds, then this is the unique
boolean solution of x = f (x).

132 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Relationship between 2-Value and 4-Valued Solutions

we have proved that boolean values in the least fixpoint enforce that value also in
all boolean solutions

the converse does not hold: there are functions f where all solutions of x = f (x)
share the same boolean value xi , but still the least fixpoint is not that value

consider the example (left hand side) and its boolean solutions (right hand side)
x0 = ¬x0 ∧ ¬x1

x1 = x2 ∨ x3

x2 = x2

x3 = x3

x0 x1 x2 x3

0 1 0 1
0 1 1 0
0 1 1 1

the least fixpoint is x̌ = (⊥,⊥,⊥,⊥)

but all boolean solutions (as shown above) agree on x0 = 0
133 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Relationship between 2-Value and 4-Valued Solutions

so, we know that boolean values in x̌ are unique for all boolean solutions

Can we say anything about boolean solutions in case x̌i = ⊥?

the following examples show that we have no further information, in particular:

there may be no boolean solution
there may be a unique boolean solution
there may be many boolean solutions

134 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P01

Example

module P01(event ?i,o1 ,o2 ,o3){

if(i) emit(o1);
if(!o1) emit(o2);
if(o2) emit(o3);

}

if i is 0, then

i o1 o2 o3 Dmust Dcan

E0 0 ⊥ ⊥ ⊥ {} {emit(o2), emit(o3)}
E1 0 0 ⊥ ⊥ {emit(o2)} {emit(o2), emit(o3)}
E2 0 0 1 ⊥ {emit(o2), emit(o3)} {emit(o2), emit(o3)}
E3 0 0 1 1 {emit(o2), emit(o3)} {emit(o2), emit(o3)}

with transition 〈E3, S〉�Q 〈nothing, {emit(o2), emit(o3)}, true〉
135 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P01

Example

module P01(event ?i,o1 ,o2 ,o3){

if(i) emit(o1);
if(!o1) emit(o2);
if(o2) emit(o3);

}

if i is 1, then

i o1 o2 o3 Dmust Dcan

E0 1 ⊥ ⊥ ⊥ {emit(o1)} {emit(o1), emit(o2), emit(o3)}
E1 1 1 ⊥ ⊥ {emit(o1)} {emit(o1), emit(o3)}
E2 1 1 0 ⊥ {emit(o1)} {emit(o1)}
E3 1 1 0 0 {emit(o1)} {emit(o1)}

with transition 〈E3, S〉�Q 〈nothing, {emit(o1)}, true〉
136 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P02

Example

module P02(event →
o1 ,o2) {

emit(o2);
if(!o1) {

if(o2) w: pause;
emit(o1);

}

}

initial reaction:
o1 o2 Dmust Dcan

E0 ⊥ ⊥ {emit(o2)} {emit(o1), emit(o2)}
E1 ⊥ 1 {emit(o2)} {emit(o2)}
E2 0 1 {emit(o2)} {emit(o2)}

with transition 〈E2, S〉�Q 〈emit(o1), {emit(o2)}, false〉
137 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P02

Example

module P02(event →
o1 ,o2) {

emit(o2);
if(!o1) {

if(o2) w: pause;
emit(o1);

}

}

second reaction (executing S ′ = emit(o1)):

o1 o2 Dmust Dcan

E0 ⊥ ⊥ {emit(o1)} {emit(o1)}
E1 1 0 {emit(o1)} {emit(o1)}

with transition 〈E1, S
′〉�Q 〈nothing, {emit(o1)}, true〉

138 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Modules P03 and P04

Example

module P03(event o) {

if(!o) emit(o);
}

module P04(event o) {

if(o) emit(o);
}

there is no way to run these
programs!

P03 does not even have
satisfying behaviors

P04 could be satisfied by both
o=true and o=false

none of the programs is causally
correct

o Dmust Dcan

E0 ⊥ {} {emit(o)}
E1 ⊥ {} {emit(o)}

139 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Modules P05 and P06

Example

module P05(event →
o1,o2) {

if(o1) emit(o1);
if(!o2) emit(o2);

}

module P06(event →
o1,o2) {

if(o1) emit(o2);
if(o2) emit(o1);

}

there is no way to run these
programs!

P05 does not even have
satisfying behaviors

P06 could be satisfied by both
o1=o2=true and o1=o2=false

none of the programs is causally
correct

o1 o2 Dmust Dcan

E0 ⊥ ⊥ {} {emit(o1), emit(o2)}
E1 ⊥ ⊥ {} {emit(o1), emit(o2)}

140 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Modules P07a and P07b

Example

module P07a(event o) {

if(o) w: pause;
emit(o);

}

module P07b(event o) {

if(!o) w: pause;
emit(o);

}

P07a has no behavior

assume o would be false, then

the control would not stop at label w
and thus would execute emit(o)

but then, o would be true

assume o would be true, then

the control would stop at label w
and thus would not execute emit(o)

but then, o would be false

Z=⇒ there is no behavior (same with P07b)

o Dmust Dcan

E0 ⊥ {} {emit(o)}
E1 ⊥ {} {emit(o)}

141 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P08

Example

module P08(event →
?i,o1,o2) {

weak immediate abort {

{

if(!i) w: →
pause;

emit(o1);
}

||

if(o1) →
emit(o2);

} when(o2);
emit(o1);

}

the program is not
constructive for i==false
(two behaviors possible)

assume i would be false, then

the control would stop at label w
and thus would not execute the first
emit(o1)

at this stage, we have to speculate
about the value of o1
assume o1 would be false, then

we would not execute emit(o2)

no abortion takes place, and the
control will remain at label w

assume o1 would be true, then

we would execute emit(o2)

the abortion takes place, and the
control will leave label w
thus, the second emit(o1) is
executed and justifies our
assumption o1==true

142 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P08

Example

module P08(event →
?i,o1,o2) {

weak immediate abort {

{

if(!i) w: →
pause;

emit(o1);
}

||

if(o1) →
emit(o2);

} when(o2);
emit(o1);

}

assume i would be true, then

the control would not stop at
label w and instead executes
emit(o1)

thus, also emit(o2) is
executed
the weak abortion takes place,
but has no effect
we then execute the second
emit(o1)

thus, o1=o2=true and
nothing is left for further
macro steps

143 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P09

Example

module P09(event →
o1,o2) {

if(o1) emit(o1);
||

if(o1)
if(!o2) →

emit(o2);
}

P09 is not constructive

note that if(!o2) emit(o2);

is a contradiction

thus, o1=true would lead to a
contradiction

thus logically only o1=o2=false

makes sense

however, this is not
constructively found

144 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P10

Example

module P10(event o) {

if(o) nothing;
emit(o);

}

in Quartz, P10 is constructive,
while in Esterel, it is not

145 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P11

Example

module P11(event →
o1,o2) {

if(o1) {

emit(o2);
if(o2) w: pause;
emit(o1);

}

}

use the simulator!

146 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P12

Example

module P12(event o) {

if(o) emit(o);
else emit(o);

}

use the simulator!

147 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P13

Example

module P13(event →
?i,o1 ,o2) {

if(i) {

if(o1) emit(o2);
} else {

if(o2) emit(o1);
}

}

use the simulator!

148 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P14

Example

module P14(event →
o1,o2) {

if(o1) emit(o2);
w: pause;
if(!o2) emit(o1);

}

use the simulator!

149 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P15

Example

module P15(event →
o1,o2) {

emit(o2);
if(o1)

if(!o2) emit(o1);
}

use the simulator!

150 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P16

Example

module P16(event o) {

if(o)
if(!o) emit(o);

}

use the simulator!

151 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P17

Example

module P17(event →
o1,o2) {

if(o1) {

emit(o2);
if(!o2) emit(o1);

}

}

use the simulator!

152 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P18

Example

module P18(event →
o1,o2) {

if(o1) {

emit(o2);
||

if(!o2) emit(o1);
}

}

use the simulator!

153 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P19

Example

module P19(event →
o1,o2) {

if(o1) {

emit(o2);
||

if(o2) emit(o1);
}

}

use the simulator!

154 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P20

Example

module P20(event →
o1,o2 ,o3 ,o4) {

if(o2) emit(o1);
||

if(o1 & o3) →
emit(o2);

||

if(!o1 & o4) →
emit(o2);

||

emit(o3);
||

emit(o4);
}

use the simulator!

155 / 158

Imperative Synchronous Languages
The Quartz Language

Semantics

Core Statements
SOS Transition Rules
SOS Reaction Rules
Causality Analysis by an Interpreter
Examples for Causality Analysis

Module P21

Example

module P21(event →
?i1 ,?i2 ,o1 ,o2) {

{

if(o1 & i1) →
emit(o2);

||

if(o2 & i2) →
emit(o1);

}

}

use the simulator!

156 / 158

References and Further Reading I

[1] A. Benveniste, P. Caspi, S. Edwards, et al. The synchronous languages twelve years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[2] G. Berry. The Esterel v5 language primer. http://www.inria.fr/meije/esterel/, 1997.

[3] G. Berry. A quick guide to Esterel, 1997.

[4] G. Berry. The constructive semantics of pure Esterel, 1999.

[5] G. Berry. The Esterel v5 language primer, 2000.

[6] G. Berry. The Esterel v5.91 system manual, 2000.

[7] G. Berry, L. Cosserat. The Esterel synchronous programming language and its mathematical semantics. Seminar on Concurrency (CONCUR),
vol. 197 of LNCS, 389–448, 1985.

[8] F. Boussinot. SugarCubes implementation of causality. Research Report 3487, Institut National de Recherche en Informatique et en
Automatique (INRIA), 1998.

[9] F. Boussinot, R. de Simone. The Esterel language. Proceedings of the IEEE, 79(9):1293–1304, 1991.

[10] J. Brandt, K. Schneider. Static data-flow analysis of synchronous programs. Formal Methods and Models for Codesign (MEMOCODE),
161–170, 2009.

[11] A. Gamatie. Designing Embedded Systems with the SIGNAL Programming Language, 2010.

[12] N. Halbwachs. Synchronous programming of reactive systems, 1993.

[13] D. Huffman. Combinational circuits with feedback. Recent Developments in Switching Theory, 27–55, 1971.

[14] G. Plotkin. A structural approach to operational semantics. Tech. Rep. FN-19, DAIMI, 1981.

[15] D. Potop-Butucaru, S. Edwards, G. Berry. Compiling Esterel, 2007.

[16] M. Riedel. Cyclic Combinational Circuits. Ph.D. thesis, California Institute of Technology, 2004.

[17] M. Riedel, J. Bruck. Cyclic combinational circuits: Analysis for synthesis. International Workshop on Logic and Synthesis (IWLS), 2003.

[18] M. Riedel, J. Bruck. The synthesis of cyclic combinational circuits. Design Automation Conference (DAC), 163–168, 2003.

[19] R. Rivest. The necessity of feedback in minimal monotone combinational circuits. IEEE Transactions on Computers (T-C), C-26(6):606–607,
1977.

[20] K. Schneider. The synchronous programming language Quartz. Internal Report 375, Department of Computer Science, University of
Kaiserslautern, 2009.

[21] K. Schneider, J. Brandt, T. Schüle. Causality analysis of synchronous programs with delayed actions. Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), 179–189, 2004.

References and Further Reading II

[22] K. Schneider, J. Brandt, T. Schüle. A verified compiler for synchronous programs with local declarations (proceedings version). Synchronous
Languages, Applications, and Programming (SLAP), 2004.

[23] K. Schneider, J. Brandt, T. Schüle, et al. Improving constructiveness in code generators. Synchronous Languages, Applications, and
Programming (SLAP), 1–19, 2005.

[24] K. Schneider, J. Brandt, T. Schüle, et al. Maximal causality analysis. Application of Concurrency to System Design (ACSD), 106–115, 2005.

[25] T. Shiple, G. Berry, H. Touati. Constructive analysis of cyclic circuits. European Design Automation Conference (EDAC), 328–333, 1996.

	Imperative Synchronous Languages
	Imperative Synchronous Languages
	Execution in Cycles
	Imperative Synchronous Languages

	The Quartz Language
	Modules
	Declarations: Flows, Data Types and Storage Classes
	Expressions
	Statements
	Example Programs: Button, ABRO, Speed

	Semantics
	Core Statements
	SOS Transition Rules
	SOS Reaction Rules
	Causality Analysis by an Interpreter
	Examples for Causality Analysis

	Appendix
	References
	References

