Quartz Language Reference Card

conventions used in reference card task declarations fask::= equality
0,01,02 boolean expressions driver for simulations T1 == T2 equality
Ty Ti, T general expressions drivenby [name] | simulation with stimuli generator stat 71 !'=T2 inequality
A A left-hand side (lhs) expressions { (writing inputs, reading outputs) numeric relations
n, m compile-time constant expressions stat T1 < T2 less than
ai, g data types } T1 <=To less than or equal to
0, 01,05 control flow locations specs for verification T > To greater than
module import and implemenation satisfies verification using optional observer and T >=Ty greater than or equal to
package pntName pntName like dirl.dir2.dir3 is a suf- [name] { proof goals boolean operators
fix of current dir.’s path; the remain- [obs] 'o not o negation
ing prefix is the root path [(goal) list] o1 & o2 o1 and 02 conjunction
import pntName pntName is added to the root path } o1l o2 01 OF 02 disjunction
and refers then to a called module observer(vdcl){ | observer with local declarations vdcl o1 " 02 01 XOr o2 exclusive or
include pntName include textfile: (cf. import) stat and body statement stat o1 —> 09 01 imp o2 implication
macro f(z1,...,o,) =7 | macro expression definition } o1 <—> 02 o1 eqv o2 equivalence
// comment single line comment expressions arithmetic operators
/x comment */ block comment (mult. lines) constants + 7 unary plus (converts nat to type int)
module m(vdcl){ module m with variable declara- false boolean constant false -7 unary minus
stat tions vdcl, body statement stat and true boolean constants true T+ addition
} optional task list type conversions T—T subtraction
[task Tist] nat2bv(7,n) | convert nat to n-bit radix-2 number T*T multiplication
variable declarations vdcl::= int2bv(r,n) convert int to n-bit 2-complement T/m division
general syntax is a comma-separated list of single declarations arr2bv(z) convert boolean array z to bitvector Thm modulo
[storage] type [flow] 1, ..., Tn tup2bv(7) convert boolean tuple to bitvector abs(7) absolute value
storage storage::= bv2nat(r) interpret bitvector as radix-2 number sat{n}(r) saturate T to type nat{n} or int{n}
mem memorized variable (store last values) bv2int(7T) interpret bitvector as 2-complement depending of T’s type
event event variable (reset to default value) num. other operators
clocked clocked variable (not always present) nat2real(r) | convert nat to real number sin(m) sinus
hybrid hybrid variable (discr.& cont. beh.) int2real(r) | convert int to real number cos(m) cosinus
data types type::= ceil(r) convert real to next greater int exp(T,) T
bool booleans floor(r) convert real to next smaller int log(m) logarithm to base 2 (for m:nat, it is
nat unbounded unsigned integers bitvector operations [log, (7))
nat{n} integers in {0, ...,n — 1} 7{n} bit 7, of bitvector 7 = (7%, ...,70) sizeOf(m)
int unbounded signed integers T{m:mn} segment Ty, . .. T (With m > n) generic expressions
int{n} integers in {—n,...,0,...,n — 1} 7{m:} segment Tp, ... 7o (With m > 0) exists (i = m..n) o; denotes \/]_, o3
real real numbers T{:n} segment (¢, ..., Tn) (wWith £ > n) forall (i = m..n) o; denotes A\ o
bv unbounded bitvectors reverse(T) reverse bitvector sum (i = m..n) 7; denotes Z?:m Ti
bv{n} bitvector of length n 71 QT bitvector concatenation clocked systems
[nlo array having n elements of type o {r::n} concatenate n instances of boolean 7 clk(N) ‘ clock of Ths-expression A
Q1 ¥ ...k Qn tuple type constructing and accessing compound types hybrid systems
information flow flow::= T[7] array access drv(r) derivation of 7 by physical time
? input variable (only readable) [10,...,7n] array of n + 1 values cont(T) switch between continuous and discrete
! output variable (only writable) Tn tuple access value
inout variable (readable and writable) (T0,...,Tn) tuple of n + 1 values time physical time for hybrid systems
misc. expressions
(T?71:70) if 7 then 71 else 1o
next(7) value of 7 in next step
flr1,. .) macro function application

Quartz Language Reference Card

statements stat::=

local declarations

proof goals goal::=

discrete statements

discrete actions

A=T

next(\) =T;
emit(\);

emit next()\);

immediate assignment
delayed assignment
immediate emission
delayed emission

{azx; S} declare variable x of type a with
scope S

let (x=7) S | abbreviate 7 by x in .S

assumption

name: assume spec;

generic statements (will be unrolled)

assertion goal

for (i=m..n) S ‘ generic sequence
for (i=m .. n)don S

name [vtask] {cl}: assert spec [with {al}];
e ¢/ is the list of controllable variables
e al is the list of assumptions

[name :] assume(0); assumption generic parallel with n € {l,&,I.&&,ll.&&& } verification task viask::=
[name :] assert(o); assertion choose (i=m .. n) S ‘ generic nondeterministic choice ProveE property is true in one initial state
wait statements module call ProveA property is true in all initial states
nothing; empty statement [iname:] m(T,...,Tn); DisProveE | property is false in one initial state
[¢:] pause; separate macro steps means: instance iname of call to module m; DisProveA | property is false in all initial states
[(;] halt; halt forever e inputs of m must be readable expressions 7; specifications spec::=
[¢:] [immediate] await (0); e outputs of m must be writable lhs-expressions 7; path quantifiers
| wait until & holds o undesired outputs of 7 can be skipped by _ Ay holds on all infinite computation paths
conditional statements abortion, suspension and during statements Egp holds on one infinite computation path
if (0) S [else Sy] [weak] [immediate] abort S when(o); linear time future operators
if o holds, execute Sy otherwise S aborts S when o holds X holds in the next point
choose S; else S [weak] [immediate] suspend S when(o); Gy always ¢ in the future
nondeterministic choice suspends S when ¢ holds Fo eventual ¢ in the future
case equivalent to [immediate] [final] during S; do 53; [oSU¥] | o until ¢ holds and ¢y must hold
(01) do S if (01) S in each step of 57 do also instantaneous Sy [oSBy 1 | ¢ before v holds and must hold
(02) do So else if (02) So hybrid systems statements stat::= [LoSWv] | ¢ when first ¢ holds and) must hold
e e (generic) flow statements [ewWuy 1 | ¢until ¢ holds or ¢ holds forever
(o) do S, else if (0,) S, flow[(i=m .. n)] perform continuous actions [LowWB1 1 | ¢ before 1) holds or 1) never holds
default S, else S, 41 {51;...;5,} S; until interrupted [oWWe] | ¢ when first ¢ holds or ¢ never holds
sequential and parallel control flow flow[(i=m .. n)|{ perform continuous actions linear time past operators
St 52 sequential execution S1;...35, S; until o holds PSX ¢ ¢ holds in the previous point and
Sy 1l .Ss synchronous |-parallel } until(o); there is a previous point
S1 ISy asynchronous |-parallel continuous actions PWX ¢ ¢ holds in the previous point or no
S1 1S interleaved |-parallel X<—T continuous assignment previous point
S1 && S synchronous &-parallel drv(x) <— 7; | derivative assignment PG,PF ¢ past time G,F
S &&& So asynchronous &-parallel [name : continuous assertion with at least PSU,PSB,PSW | past time SU,SB,SW
S1 & So interleaved &-parallel constrainSME oneof S, M, E PWU,PWB,PWW | past time WU,WB,WW
loops mu calculus operators
loop S infinite loop of .S nuz. greatest fixpoint wrt. z
do Swhile(o) | repeat.S while o holds muz. least fixpoint wrt. z
while (0)S while o holds, repeat S <> holds in one successor state
always S infinite loop of pause;S; 0 holds in all successor states
immediate always S <> ¢ holds in one predecessor state

| infinite loop of S;pause;

[:1¢ ¢ holds in all predecessor states

