
Quartz Language Reference Card
conventions used in reference card

�,�1,�2 boolean expressions

⌧, ⌧i,⇡ general expressions

�,�i left-hand side (lhs) expressions

n,m compile-time constant expressions

↵1,↵2 data types

`, `1, `2 control flow locations

module import and implemenation

package pntName pntName like dir1.dir2.dir3 is a suf-

fix of current dir.’s path; the remain-

ing prefix is the root path

import pntName pntName is added to the root path

and refers then to a called module

include pntName include textfile: (cf. import)

macro f(x1, . . . , xn) = ⌧ macro expression definition

// comment single line comment

/⇤ comment ⇤/ block comment (mult. lines)

module m(vdcl){

stat

}

[task list]

module m with variable declara-

tions vdcl, body statement stat and

optional task list

variable declarations vdcl::=

general syntax is a comma-separated list of single declarations

[storage] type [flow] x1, . . . , xn

storage storage::=

mem memorized variable (store last values)

event event variable (reset to default value)

clocked clocked variable (not always present)

hybrid hybrid variable (discr.& cont. beh.)

data types type::=

bool booleans

nat unbounded unsigned integers

nat{n} integers in {0, . . . , n� 1}
int unbounded signed integers

int{n} integers in {�n, . . . , 0, . . . , n� 1}
real real numbers

bv unbounded bitvectors

bv{n} bitvector of length n

[n]↵ array having n elements of type ↵

↵1 ⇤ . . .⇤ ↵n tuple type

information flow flow::=

? input variable (only readable)

! output variable (only writable)

inout variable (readable and writable)

task declarations task::=

driver for simulations

drivenby [name]

{

stat

}

simulation with stimuli generator stat

(writing inputs, reading outputs)

specs for verification

satisfies
[name] {

[obs]

[(goal) list]

}

verification using optional observer and

proof goals

observer(vdcl){

stat

}

observer with local declarations vdcl

and body statement stat

expressions

constants

false boolean constant false

true boolean constants true

type conversions

nat2bv(⌧, n) convert nat to n-bit radix-2 number

int2bv(⌧, n) convert int to n-bit 2-complement

arr2bv(x) convert boolean array x to bitvector

tup2bv(⌧) convert boolean tuple to bitvector

bv2nat(⌧) interpret bitvector as radix-2 number

bv2int(⌧) interpret bitvector as 2-complement

num.

nat2real(⌧) convert nat to real number

int2real(⌧) convert int to real number

ceil(⌧) convert real to next greater int
floor(⌧) convert real to next smaller int

bitvector operations

⌧{n} bit ⌧n of bitvector ⌧ = (⌧`, . . . , ⌧0)

⌧{m:n} segment ⌧m . . . ⌧n (with m � n)

⌧{m:} segment ⌧m . . . ⌧0 (with m � 0)

⌧{:n} segment (⌧`, . . . , ⌧n) (with ` � n)

reverse(⌧) reverse bitvector

⌧1 @ ⌧2 bitvector concatenation

{⌧::n} concatenate n instances of boolean ⌧

constructing and accessing compound types

⌧ [⇡] array access

[⌧0, . . . , ⌧n] array of n+ 1 values

⌧.n tuple access

(⌧0, . . . , ⌧n) tuple of n+ 1 values

misc. expressions

(⌧?⌧1:⌧0) if ⌧ then ⌧1 else ⌧0

next(⌧) value of ⌧ in next step

f(⌧1, . . . , ⌧n) macro function application

equality

⌧1 == ⌧2 equality

⌧1 != ⌧2 inequality

numeric relations

⌧1 < ⌧2 less than

⌧1 <= ⌧2 less than or equal to

⌧1 > ⌧2 greater than

⌧1 >= ⌧2 greater than or equal to

boolean operators

! � not � negation

�1 & �2 �1 and �2 conjunction

�1 | �2 �1 or �2 disjunction

�1 ^ �2 �1 xor �2 exclusive or

�1 �> �2 �1 imp �2 implication

�1 <�> �2 �1 eqv �2 equivalence

arithmetic operators

+ ⇡ unary plus (converts nat to type int)

� ⇡ unary minus

⌧ + ⇡ addition

⌧ � ⇡ subtraction

⌧ ⇤ ⇡ multiplication

⌧ / ⇡ division

⌧ % ⇡ modulo

abs(⌧) absolute value

sat{n}(⌧) saturate ⌧ to type nat{n} or int{n}
depending of ⌧ ’s type

other operators

sin(⇡) sinus

cos(⇡) cosinus

exp(⌧,⇡) ⌧

⇡

log(⇡) logarithm to base 2 (for ⇡:nat, it is

dlog2(⇡)e)

sizeOf(⇡)
generic expressions

exists (i = m..n) �i denotes

Wn
i=m �i

forall (i = m..n) �i denotes

Vn
i=m �i

sum (i = m..n) ⌧i denotes

Pn
i=m ⌧i

clocked systems

clk(�) clock of lhs-expression �

hybrid systems

drv(⌧) derivation of ⌧ by physical time

cont(⌧) switch between continuous and discrete

value

time physical time for hybrid systems

Quartz Language Reference Card

statements stat::=

discrete statements

discrete actions

� = ⌧ immediate assignment

next(�) = ⌧ ; delayed assignment

emit(�); immediate emission

emit next(�); delayed emission

[name :] assume(�); assumption

[name :] assert(�); assertion

wait statements

nothing; empty statement

[` :] pause; separate macro steps

[` :] halt; halt forever

[` :] [immediate] await (�);
wait until � holds

conditional statements

if (�) S1 [else S2]
if � holds, execute S1 otherwise S2

choose S1 else S2

nondeterministic choice

case
(�1) do S1

(�2) do S2

· · ·
(�n) do Sn

default Sn+1

equivalent to

if (�1) S1

else if (�2) S2

· · ·
else if (�n) Sn

else Sn+1

sequential and parallel control flow

S1 S2 sequential execution

S1 || S2 synchronous |-parallel

S1 ||| S2 asynchronous |-parallel

S1 | S2 interleaved |-parallel

S1 && S2 synchronous &-parallel

S1 &&& S2 asynchronous &-parallel

S1 & S2 interleaved &-parallel

loops

loop S infinite loop of S

do S while(�) repeat S while � holds

while (�)S while � holds, repeat S

always S infinite loop of pause;S;

immediate always S

infinite loop of S;pause;

local declarations

{ ↵ x; S } declare variable x of type ↵ with

scope S

let (x = ⌧) S abbreviate ⌧ by x in S

generic statements (will be unrolled)

for (i=m .. n) S generic sequence

for (i=m .. n) do ⌘ S
generic parallel with ⌘ 2 {|,&,||,&&,|||,&&& }

choose (i=m .. n) S generic nondeterministic choice

module call

[iname:] m(⌧1, . . . , ⌧n);

means: instance iname of call to module m;

• inputs of m must be readable expressions ⌧i

• outputs of m must be writable lhs-expressions ⌧i

• undesired outputs of m can be skipped by _

abortion, suspension and during statements

[weak] [immediate] abort S when(�);

aborts S when � holds

[weak] [immediate] suspend S when(�);

suspends S when � holds

[immediate] [final] during S1 do S2;

in each step of S1 do also instantaneous S2

hybrid systems statements stat::=

(generic) flow statements

flow[(i=m .. n)]

{S1; . . . ;Sn}

perform continuous actions

Si until interrupted

flow[(i=m .. n)]{

S1; . . . ;Sn

} until(�);

perform continuous actions

Si until � holds

continuous actions

x <� ⌧ continuous assignment

drv(x) <� ⌧ ; derivative assignment

[name :]
constrainSME(�);

continuous assertion with at least

one of S,M,E

proof goals goal::=

assumption

name: assume spec;

assertion goal

name [vtask] {cl}: assert spec [with {al}];

• cl is the list of controllable variables

• al is the list of assumptions

verification task vtask::=

ProveE property is true in one initial state

ProveA property is true in all initial states

DisProveE property is false in one initial state

DisProveA property is false in all initial states

specifications spec::=

path quantifiers

A ' ' holds on all infinite computation paths

E ' ' holds on one infinite computation path

linear time future operators

X ' ' holds in the next point

G ' always ' in the future

F ' eventual ' in the future

[' SU] ' until holds and must hold

[' SB] ' before holds and ' must hold

[' SW] ' when first holds and must hold

[' WU] ' until holds or ' holds forever

[' WB] ' before holds or never holds

[' WW] ' when first holds or never holds

linear time past operators

PSX ' ' holds in the previous point and

there is a previous point

PWX ' ' holds in the previous point or no

previous point

PG,PF ' past time G,F
PSU,PSB,PSW past time SU,SB,SW
PWU,PWB,PWW past time WU,WB,WW

mu calculus operators

nu z. ' greatest fixpoint wrt. z

mu z. ' least fixpoint wrt. z

<> ' ' holds in one successor state

[] ' ' holds in all successor states

<:> ' ' holds in one predecessor state

[:] ' ' holds in all predecessor states

