Quartz Language Reference Card | con | ventions | s used in reference card | | | |-------------------------------------|--|---|--|--| | $\sigma, \sigma_1, \sigma_2$ | | boolean expressions | | | | $ au, au_i,\pi$ | | general expressions | | | | λ, λ_i | left-hand side (lhs) expressions | | | | | n, m | | compile-time constant expressions | | | | α_1, α_2 | | data types | | | | ℓ,ℓ_1,ℓ_2 | control flow locations | | | | | module import and implemenation | | | | | | package pntName | | pntName like dir1.dir2.dir3 is a suf-
fix of current dir.'s path; the remain-
ing prefix is the root path | | | | import pntName | | pntName is added to the root path and refers then to a called module | | | | include pntName | | include textfile: (cf. import) | | | | $macro\ f(x_1,\ldots,x_n)=\tau$ | | macro expression definition | | | | // comment | | single line comment | | | | /* comment */ | | block comment (mult. lines) | | | | $\verb module m(vdcl)$ | { | module m with variable declara- | | | | stat | | tions vdcl, body statement stat and | | | | } | | optional task list | | | | [task list] | | | | | | | | declarations vdcl::= | | | | • | | -separated list of single declarations | | | | [storage] type [flo | | | | | | | sto | rage storage::= | | | | mem | | memorized variable (store last values) | | | | event ev | | event variable (reset to default value) | | | | | | clocked variable (not always present) | | | | hybrid | | hybrid variable (discr.& cont. beh.) | | | | | | a types type::= | | | | bool | boolear | | | | | nat | unbounded unsigned integers | | | | | $\mathtt{nat}\{n\}$ | integers in $\{0,\ldots,n-1\}$ | | | | | int | unbounded signed integers | | | | | $\mathtt{int}\{n\}$ | integers in $\{-n, \dots, 0, \dots, n-1\}$ | | | | | real | real numbers | | | | | | unbounded bitvectors | | | | | bv | | | | | | $ rac{\mathbf{bv}\{n\}}{[n]\alpha}$ | bitvecto | or of length n aving n elements of type α | | | tuple type information flow flow::= input variable (only readable) output variable (only writable) inout variable (readable and writable) $\alpha_1 * \ldots * \alpha_n$ | | task declarations task::= | | |--|---|--| | | driver for simulations | | | drivenby [nam
{
stat
} | e] simulation with stimuli generator <i>stat</i> (writing inputs, reading outputs) | | | , | specs for verification | | | satisfies verification using optional observer and | | | | [name] { [obs] | proof goals | | | [(goal) list] | | | | observer(vdcl) | observer with local declarations <i>vdcl</i> | | | stat | and body statement stat | | | } | | | | | expressions | | | | constants | | | false | boolean constant false | | | true | boolean constants true | | | | type conversions | | | $\mathbf{nat2bv}(\tau,n)$ | convert nat to <i>n</i> -bit radix-2 number | | | $\mathtt{int2bv}(\tau,n)$ | convert int to <i>n</i> -bit 2-complement | | | $\mathtt{arr2bv}(x)$ | convert boolean array x to bitvector | | | $tup2bv(\tau)$ | convert boolean tuple to bitvector | | | $bv2nat(\tau)$ | interpret bitvector as radix-2 number | | | $\texttt{bv2int}(\tau)$ | interpret bitvector as 2-complement | | | | num. | | | $\mathtt{nat2real}(\tau)$ | convert nat to real number | | | $int2real(\tau)$ | convert int to real number | | | ceil(\tau) | convert real to next greater int | | | ${ t floor}(au)$ | convert real to next smaller int | | | $\pi(n)$ | bit τ_n of bit vector $\tau = (\tau_\ell, \dots, \tau_0)$ | | | $ au\{n\}$ $ au\{m:n\}$ | segment $\tau_m \dots \tau_n$ (with $m \ge n$) | | | $\tau\{m.n\}$ | segment $\tau_m \dots \tau_n$ (with $m \ge n$) segment $\tau_m \dots \tau_0$ (with $m \ge 0$) | | | $\tau\{:n\}$ | segment (τ_m, \ldots, τ_n) (with $t \ge 0$) | | | $reverse(\tau)$ | reverse bitvector | | | $\tau_1 @ \tau_2$ | bitvector concatenation | | | $\{\tau::n\}$ | concatenate n instances of boolean τ | | | constructing and accessing compound types | | | | $\tau[\pi]$ | array access | | | $[\tau_0,\ldots,\tau_n]$ | array of $n+1$ values | | | $\tau.n$ | tuple access | | | (au_0,\ldots, au_n) | tuple of $n+1$ values | | | | misc. expressions | | | $(\tau ? \tau_1 : \tau_0)$ | if τ then τ_1 else τ_0 | | | $\mathtt{next}(\tau)$ | value of $ au$ in next step | | | $f(\tau_1,\ldots,\tau_n)$ | macro function application | | | | ec | quality | | | | | |----------------------------------|--|--|--|--|--|--| | $\tau_1 == \tau_2$ | equality | | | | | | | τ_1 != τ_2 | inequality | | | | | | | | numeric relations | | | | | | | $\tau_1 < \tau_2$ | less than | | | | | | | $\tau_1 \leftarrow \tau_2$ | less than or | r equal to | | | | | | $\tau_1 > \tau_2$ | greater tha | n | | | | | | $\tau_1 >= \tau_2$ | greater that | n or equal to | | | | | | | boolea | n operators | | | | | | ! σ | $\mathtt{not}\ \sigma$ | negation | | | | | | σ_1 & σ_2 | σ_1 and σ_2 | conjunction | | | | | | $\sigma_1 \mid \sigma_2$ | σ_1 or σ_2 | disjunction | | | | | | σ_1 ^ σ_2 | σ_1 xor σ_2 | exclusive or | | | | | | $\sigma_1 \rightarrow \sigma_2$ | σ_1 imp σ_2 | implication | | | | | | $\sigma_1 \leftarrow > \sigma_2$ | σ_1 eqv σ_2 | equivalence | | | | | | | arithme | tic operators | | | | | | + π | unary plus | (converts nat to type int) | | | | | | $-\pi$ | unary minu | 18 | | | | | | τ + π | addition | | | | | | | $ au-\pi$ | subtraction | 1 | | | | | | $\tau * \pi$ | multiplicat | ion | | | | | | τ / π | division | | | | | | | τ % π | modulo | | | | | | | $\mathtt{abs}(au)$ | absolute va | | | | | | | $\mathtt{sat}\{n\}(au)$ | saturate $ au$ 1 | to type $\mathtt{nat}\{n\}$ or $\mathtt{int}\{n\}$ | | | | | | depending of τ 's type | | | | | | | | | other | operators | | | | | | $ extsf{sin}(\pi)$ | sinus | | | | | | | $\cos(\pi)$ | cosinus | | | | | | | $exp(au,\pi)$ | $ au^{\pi}$ | | | | | | | $log(\pi)$ | | to base 2 (for π :nat, it is | | | | | | | $\lceil \log_2(\pi) \rceil$ | | | | | | | $\mathtt{sizeOf}(\pi)$ | | | | | | | | | | expressions | | | | | | exists $(i =$ | | $\begin{cases} \text{denotes } \bigvee_{i=m}^{n} \sigma_i \\ \text{denotes } \bigwedge_{i=m}^{n} \sigma_i \end{cases}$ | | | | | | forall (i = | | denotes $\bigwedge_{i=m}^{n} \sigma_i$ | | | | | | $\mathbf{sum}\ (i=m.$ | $\mathbf{sum} \ (i=mn) \ \tau_i \qquad \qquad \text{denotes } \sum_{i=m}^n \tau_i$ | | | | | | | | | ed systems | | | | | | $\mathtt{clk}(\lambda)$ | | s-expression λ | | | | | | | | id systems | | | | | | $\mathbf{drv}(au)$ | | derivation of $ au$ by physical time | | | | | | $\mathtt{cont}(au)$ | | switch between continuous and discrete | | | | | | | value | | | | | | | time | physical tii | me for hybrid systems | | | | | ## Quartz Language Reference Card | | statements stat::= | | | | |---|--|--|--|--| | | discrete statements | | | | | discrete actions | | | | | | $\lambda = \tau$ | immediate assignment | | | | | $\mathbf{next}(\lambda) = \tau;$ | delayed assignment | | | | | $\mathtt{emit}(\lambda);$ | immediate emission | | | | | $\mathbf{emit}\ \mathbf{next}(\lambda$ | delayed emission | | | | | [name:] assur | $\mathbf{ne}(\sigma)$; assumption | | | | | [name:] asser | $rt(\sigma)$; assertion | | | | | | wait statements | | | | | nothing; | empty statement | | | | | $[\ell:]$ pause; | separate macro steps | | | | | $[\ell:]$ <code>halt</code> ; | halt forever | | | | | $[\ell:]$ [immediate] await (σ) ; | | | | | | wait until σ holds | | | | | | | conditional statements | | | | | if (σ) S_1 $[$ els | • | | | | | | if σ holds, execute S_1 otherwise S_2 | | | | | ${ t choose}\ S_1$ el | .se S_2 | | | | | | nondeterministic choice | | | | | case | equivalent to | | | | | (σ_1) do S_1 | \mid if (σ_1) S_1 | | | | | (σ_2) do S_2 | else if (σ_2) S_2 | | | | | • • • | ••• | | | | | (σ_n) do S_n | else if (σ_n) S_n | | | | | $\operatorname{default} S_{n+}$ | $_{1}$ else S_{n+1} | | | | | | ential and parallel control flow | | | | | $S_1 S_2$ | sequential execution | | | | | $S_1 \parallel S_2$ | synchronous I-parallel | | | | | $S_1 \parallel \mid S_2$ | asynchronous I-parallel | | | | | $S_1 \mid S_2$ | interleaved I-parallel | | | | | S_1 && S_2 | synchronous &-parallel | | | | | S_1 &&& S_2 | asynchronous &-parallel | | | | | S_1 & S_2 | interleaved &-parallel | | | | | | loops | | | | | loop S | infinite loop of S | | | | | do S while $(\sigma$ | / * | | | | | while $(\sigma)S$ | while σ holds, repeat S | | | | | always S infinite loop of pause; S ; | | | | | | $\begin{array}{c} {\tt immediate\ always}\ S \end{array}$ | | | | | | | infinite loop of S;pause; | | | | | | local declarations | | | |--|--|----|--| | $\{ \alpha x; S \}$ | declare variable x of type α with | | | | | scope S | | | | $\mathbf{let}\;(x=\tau)S$ | abbreviate τ by x in S | | | | | ric statements (will be unrolled) | | | | $\mathbf{for} \ (\mathbf{i} \text{=} m \ \ n)$ | S generic sequence | | | | $\mathbf{for} \ (\mathbf{i} \text{=} m \ \ n)$ | | | | | | eneric parallel with $\eta \in \{$ I,&,II,&&,III,&&& | | | | choose ($i=m$ | (n, n) S generic nondeterministic choice | ce | | | | module call | | | | [iname:] $m(au_1, \dots$ | $(\ldots, au_n);$ | | | | means: instance i | <i>iname</i> of call to module <i>m</i> ; | | | | • inputs of m | must be readable expressions $ au_i$ | | | | • outputs of m | n must be writable lhs-expressions τ_i | | | | undesired ou | itputs of m can be skipped by _ | | | | | , suspension and during statements | | | | | $ extbf{nediate}$ abort S when (σ) ; | | | | aborts S when α | τ holds | | | | [weak] [imm | $oldsymbol{lediate}$ $oldsymbol{suspend}\ S\ oldsymbol{when}(\sigma);$ | | | | suspends S whe | σ holds | | | | | [final] during S_1 do $S_2;$ | | | | in each step of A | S_1 do also instantaneous S_2 | | | | hyb | rid systems statements stat::= | | | | | (generic) flow statements | | | | flow[(i=m m]] | n)] perform continuous actions | | | | $\{S_1;\ldots;S_n\}$ | S_i until interrupted | | | | flow[(i=m m]] | n)]{ perform continuous actions | | | | $S_1; \ldots; S_n$ | S_i until σ holds | | | | } until(σ); | | | | | | continuous actions | | | | x <- τ | continuous assignment | | | | $\mathbf{drv}(\mathbf{x}) < -\tau;$ | derivative assignment | | | | [name:] | continuous assertion with at least | | | | constrainSME | one of S, M, E | proof goals goal::= | | | | | |---------------------------------------|---|--|--|--|--| | | assumption | | | | | | name: assume | spec; | | | | | | | assertion goal | | | | | | name [vtask] {cl | $\{ \} : $ assert $spec$ [with $\{al\}$]; | | | | | | • cl is the list | of controllable variables | | | | | | • al is the list | of assumptions | | | | | | | verification task vtask::= | | | | | | ProveE | property is true in one initial state | | | | | | ProveA | property is true in all initial states | | | | | | DisProveE | property is false in one initial state | | | | | | DisProveA | property is false in all initial states | | | | | | | specifications spec::= | | | | | | | path quantifiers | | | | | | A φ φ ho | lds on all infinite computation paths | | | | | | E φ φ ho | lds on one infinite computation path | | | | | | | linear time future operators | | | | | | $\mathbf{X} \varphi$ | φ holds in the next point | | | | | | $\mathbf{G}arphi$ | always φ in the future | | | | | | F φ | eventual φ in the future | | | | | | [$arphi$ SU ψ] | φ until ψ holds and ψ must hold | | | | | | [$arphi$ SB ψ] | φ before ψ holds and φ must hold | | | | | | [$arphi$ SW ψ] | φ when first ψ holds and ψ must hold | | | | | | [$arphi$ WU ψ] | φ until ψ holds or φ holds forever | | | | | | [$arphi$ WB ψ] | φ before ψ holds or ψ never holds | | | | | | [$arphi$ WW ψ] | φ when first ψ holds or ψ never holds | | | | | | | linear time past operators | | | | | | $\operatorname{\mathtt{PSX}} \varphi$ | φ holds in the previous point and | | | | | | | there is a previous point | | | | | | PWX φ | φ holds in the previous point or no | | | | | | | previous point | | | | | | PG,PF $arphi$ | past time G,F | | | | | | PSU,PSB,PSW | 1 ' | | | | | | PWU,PWB,PWW | * | | | | | | | mu calculus operators | | | | | | nu z. φ | greatest fixpoint wrt. z | | | | | | mu z. φ | least fixpoint wrt. z | | | | | | <> φ | φ holds in one successor state | | | | | | $\Box \varphi$ | φ holds in all successor states | | | | | | <:> φ | φ holds in one predecessor state | | | | | | $[:] \varphi$ | φ holds in all predecessor states | | | | |